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The time-dependent angular pair correlation function is discussed and its 
use in the analysis of inelastic neutron scattering experiments from poly- 
atomic fluids is described, including both the coherent and incoherent 
spectra. The get of formal results given here permits a systematic inter- 
pretation of neutron inelastic scattering spectra on simple molecular 
liquids. Neutron spectra second moments are reviewed, and a new result 
for the fourth moment is given for the incoherent spectrum. Numerical 
results for the moments are obtained. The fourth moment depends on the 
mean squared torque and the mean squared force acting on a molecule 
in the fluid, and may provide a means for studying intermolecular forces 
in dense fluids. In addition, a method of calculating the correlation function 
for weak anisotropic forces is outlined. 
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1. I N T R O D U C T I O N  

In  his  n o w  classic  pape r ,  V a n  H o v e  ~22~ s h o w e d  t h a t  (in first  B o r n  a p p r o x i -  

m a t i o n )  the  n e u t r o n  ine las t ic  s ca t t e r ing  c ross  sec t ion  fo r  m o n a t o m i c  sys t ems  
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gives direct experimental access to the space-time correlation function 
G(RaR. 2t). This function gives the probability density that a molecule will 
be at position R2 at time t, given that a molecule was at Ra initially. The 
fundamental relations obtained by Van Hove laid the foundation for the 
interpretation of experimental studies of monatomic gases, liquids, and solids; 
studying the cross section for a wide range of momentum and energy trans- 
fers provides a probe of the structure and dynamics of the system (cf. Egel- 
staff (3) for a review). 

Inelastic neutron scattering from polyatomic systems has been studied 
for various models of free and hindered rotators (Sachs and Teller, (a4) Pope, (13~ 
Zemach and Glauber, (25~ Krieger and Nelkin, (8~ Sears(a6-18~). The problem 
has been formulated in a general way by Steele and Pecora (2~ in terms of an 
angular space-time correlation function G(R1R2f~f22t). This function gives 
the probability of finding at time t a molecule at R2 with orientation f22, 
given that a molecule was present at R1 with orientation f21 initially. 

In this paper we first review the extension of the Van Hove formalism 
to classical (rigid)polyatomic liquids. To make this section accessible to 
experimentalists, we reformulate the theory in customary neutron scattering 
notation. The results are easily compared with the diffraction theory given 
previously (Gubbins et al.(6>). We also discuss the coherent and incoherent 
scattering, and give some new results for the moments of the inelastic 
scattering. Numerical results are given for the second and fourth moments. 
For weak angle-dependent forces we outline a perturbation method of cal- 
culating the pair correlation functions. 

Section 2 defines the function G(R~R2~af22t) and briefly considers its 
properties. In Section 3 the relation between the scattering cross section and 
the angular Van Hove correlation function is derived. This section is an 
extension to the time-dependent case of the theory previously given by 
Gubbins et alJ 6~ for the structure factor S(q)  for molecular fluids. Some 
limiting cases are considered in Section 4. This is followed by the evaluation 
of some low-order moments in Section 5. In the appendix we sketch the 
perturbation theory for calculating G. 

2. A N G U L A R  V A N  H O V E  C O R R E L A T I O N  F U N C T I O N  

We first briefly define the notation to be used. Angle brackets will 
denote a grand canonical ensemble average over initial values of the phase 
of the system of N (rigid) molecules; thus for any function A of the phase 

(A) = ~o f dx~ "" dxNfNAN (i) 
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where 

zN /N o : : fN = ~ e -  ~",, N V ~  dx,  ... dxN e -  B~,, (2) 

and/3 = 1/kT,  z = exp ( l z / kT )  is the activity, h is Planck's constant, and x4 
is an abbreviation for the phase coordinates Rt, P4. f14, and Pa~; here Ri 
is the position of the center of mass of molecule i, p~ is its linear momentum, 
and Phi is the momentum conjugate to f~, where t)~ = ~,  04, X~ are the Euler 
angles. In (2) the N-molecule Hamiltonian is given by 

~p2 ~j~ 
HN = Tm + q/N(RNf2N) + 

4=1 i =  

(3) 

where egN is the potential energy of the N-molecule system, m is the molecular 
mass, and Jr, is the angular momentum along the principal axis a, and 1~ is 
the moment of inertia along axis ~. In what follows it will frequently be con- 
venient to express the time dependence of a phase variable A in terms of the 
N-particle streaming operator St, defined by 

St =- e 4"~nt 

where S~ is the Liouville operator, 

SON = - i ,__/_~ L~P: eR: eRj ~: - i y= I 

Physically, St is the operator that changes the 
from their initial values to the values at time t 

StAN(O) = A ~ ( t )  

(4) 

[ ~HN ~ aHN ~ 1 

phase variables of a function 
later, i.e., 

(6) 

We note that the term q/N(RNf~ N) in (3) leads to coupling of the rotational 
and translational motions, as seen from (5); only when ql is independent 
of molecular orientations (free rotation) will these two motions be dynami- 
cally independent. 

The time-dependent angular pair correlation function G(R1R2f21fI2t)  

is defined by 

G(R~R2fZ~f22t ) = ((12/p 2) < ~ .  3(R~ - Ri(0)) 3(R2 - R,(t)) 

x 8(f/1 - f~t(0))~(f/2 - f2 j ( t ) ) )  (7) 

where p is the number density, f/ = f dO and is 4rr for linear and 8~r 2 for 
nonlinear molecules, respectively, and summations run from 1 to N. For a 
homogeneous, isotropic fluid, G depends only on the relative position R = 
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R1 

G(Rf~t). An alternative form of (7) is 

G ( R ~ R ~ t )  = (~/p2)(p(R~f2~O)p(R2f2~t)) 

where 

- R 2  and relative orientation f~ = s  f~2, i.e., G can be written 

(8) 

p(Rf~t) = ~ 3(R - R,(t))3(f2 - f2,(t)) (9) 
t 

is a local number density per unit solid angle for molecules with orientation 
f~ at R, t. Also, for an isotropic, homogeneous system 

(p(Rnt))  = p/~ (I0) 

The angular Van Hove correlation function can be split into self and 
distinct parts in the usual way, G = Gs + Ga, where 

G,(R1R~f~,f~2t) = ( ~ 2 / p 2 ) ( ~ . .  $(R~ - R , (0 ) )~ (R2  - R , ( t ) )  
N ~  

x ~ ( ~  - ~ , ( o ) ) ~ ( ~  - ~ , ( t ) ) )  (11) 
/ 

= (Q~21p2)(~.. 3(R1 - R,(0)) 8(R2 - R j ( t ) )  

# 

Ga(R1R~l f~2t ) 
N 1 ~ J  

~(O1 - O,(0))~(~2 - f2 j ( t ) ) )  (12) 

The self function G, is proportional to the probability density that a par- 
ticular molecule will be at R2~2 at t, given that the same molecule was at 
R1~1 initially, whereas the distinct function Ga is proportional to the prob- 
ability density that a molecule is at R2~2 at t given that a different molecule 
was at R a ~  initially. 

The static limits of the self and distinct parts of G(R~R2O~922t) are 
obtained by putting t = 0 in (1 1) and (12). For an isotropic, homogeneous 
fluid 

Gs(R1Rzf21f22t = 0) = (~2/p) 3(R1 - R2) 3(f2~ - f22) (13) 

Ga(R~R2f2~f22t = 0) = g(R~R2f21f22) (14) 

In (14), g(R2Rzf~f2=) is the static angular pair correlation function, defined 
as  

g(R1R,~f~,n2) = 3(R1 - R0 3(R2 - R,) 3(f~1 - ~, )  3(f22 - f ~ ' ) b  
/ 

(15) 

which for rigid molecules becomes 

~2 q~t zN ( dR ~- 2 df~S- 2 g(R~Ruf2, f~u) = ~, exp( -  fie) (16) pS"-~ 
J AaN~-~ ~ 2) 1 
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where E is the grand partition function,  qrot is the rotational kinetic energy 
partition function for a single molecule, and A = (h2/27rrnkT) ~I2 

In the limit of large time or large IR~ - R2[, the molecules at ( R t ~ 0 )  
and at (R2~2t) are uncorrelated. Thus (8) gives 

6(R~R2f~lf22t = oo) = (fi2/p~)(p(r~n~O))(p(r~a~)) (17) 

For an isotropic, homogeneous fluid, (10) and (16) give 

Also, 

G(RIR2~I~2t = ~ )  = 1 (18) 

where 

where 

/ *  

( ') .1.~ = (l/f22) J -.. da~ dg22 (21) 

In the final form of (20) it should be noted that the intermolecular potential 
energy q/(R~f~ N) depends on molecular orientations; consequently, G(R~R2t) 
will be influenced by angular correlations between molecules, through both 
the ensemble averaging and the time evolution of R,(t). 

It is similarly possible to define a correction function for molecular 
orientations, G(~)l~zt); this gives the probability density that a molecule 
has orientation D2 at time t, given that a molecule had orientation D~ 
initially, irrespective of the positions R~ and R2 of the centers. It is defined by 

G(~)IF22t ) =_ (G(R~R~axa2t)>a~R~ 

= ( ~ 2 / N m 2 ) ( ~  3 ( ~  -- ~),(O))3(~2 - ~)~(t))) (22) 

('")R1R~ = (1/v2) f "'" dRx dR2 (23) 

Q(R1R2~I~2t = oo) = 0 (19) 

with similar expressions (for all t) when [R1 - R2[ ~ ~ .  
In addition to the angular Van Hove correlation function defined in 

(7), it is also useful to define the Van Hove function for molecular centers, 
G(R~R2t). This is proportional to the probability density that there will be 
a molecule at R2 at t given a molecule at R1 initially, irrespective of the molec- 
ular orientations. It is given by 

G(R1R2t) = (G(R~R2f~n2t))n~2 (20) 

= ( I / p 2 ) ( ~  3(Rx - R,(O)) 3(R2 - R j ( t ) ) )  (20') 
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and Arm = (N)  = pV. The self-part of G(f21s arises in the theory of 
rotational diffusion. 

For monatomic fluids the averaging over orientations in (7) can be per- 
formed immediately to give 

G(R1R2t) = ( 1 / p 2 ) ( ~  8(R1 - R~(0))~(R2 - R : ( / ) )~  (24) 

which is the usual Van Hove function. In (24) both the ensemble average 
(-..> and the time evolution operator are for the system with potential 
energy q/0(RN). It should be noted that the definitions of G(R1R2f21f22t) 
and G(R1R2t) given in (7) and (23) differ from the original definitions of Van 
Hove by a factor p - i ;  the normalization used here preserves the customary 
definition for the static pair correlation function [e.g., Eq. (16)]. 

In the case of free rotation it is possible to factorize the self- and distinct 
parts of G(R1R2f21f22t) into parts depending on molecular centers and molec- 
ular orientations. The function ~ in (3) is then independent of molecular 
orientations, and the Hamiltonian separates into parts H~ r~nS and H~ ~ which 
depend on center-of-mass and rotational coordinates, respectively. Further- 
more, from (5) the Liouville operator undergoes a similar decoupling, 
Le N = ~ : t r a n s  ~fvot. - -n  + Moreover, these last two operators commute, so that 
(4) becomes 

s ,  = sV~o~s~ ot (25) 

where S~ r~n~ describes the center-of-mass motion and Sf ~ describes the 
rotational motions. When these results are substituted in (7) and i = j and 
i ~ j terms are considered separately, we obtain 

G,(a~Rzf2~f22t) = Ga(RIR2t) (26) 

G~(RzR2f2~f22t) = NmG~(R1R2t)G,(f21f2zt ) (27) 

where G(R1Rzt) and G(f2~f22t) are given by (20) and (22), respectively. 
Spherical harmonic expansions for the rotational time correlation function 
G~(f2~f22t) have been studied by several workers for the case of free rotation. 
Thus Sears ~6-i~> has calculated the first few terms in such a series for homo- 
nuclear diatomic and tetrahedral molecules, while Steele and Pecora (2~ 
and St. Pierre and Steele (~9~ have considered more general shapes. Such 
expansions converge rapidly, so that the first two terms are usually sufficient 
to give a satisfactory approximation. [We note that the function G(f~f22t) 
used by Sears is (Nm/(22) times the function G~(f2~f]2t) used here.] 

For the case that the translational and rotational motions are strongly 
correlated, only the diffusion limit (cf., e.g., Maeda and Saito, (9~ Schaefer 
et al. (~s)) seems to have been discussed. 
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For weakly coupled translational and rotational motions, a perturbation 
treatment should prove satisfactory. In the appendix we outline the formal 
development of such a theory, using as a reference a system of freely rotating 
molecules. We write the potential as 

= ~'o + a~ (28) 

where ag0(RN ) ~ <~)~N is the isotropic part and ~ is the anisotropic 
part. One useful result of the perturbation treatment is that the centers 
correlation function is equal to the reference centers function to first 
order: 

G(R,Rd) = Go(R1R2/) + O(A 2) (29) 

where Go corresponds to ado. An analogous result for the static case was 
proved by Ananth et al. m In the static case, one knows from Monte Carlo 
studies (Wang et al.<2~); Verlet and Weis (23>) that the higher order terms in 
(29) are negligible even for strong multipolar forces in liquids; for strongly 
anisotropic overlap forces there are significant differences, however. 

3. THE D Y N A M I C  S T R U C T U R E  FACTOR 

We assume that all molecules are in their ground electronic states, and 
that classical statistical mechanics applies. In the first Born approximation 
the neutron differential scattering cross section for all nuclei in the sample 
is given by 

d2~ = k 1 ( ~~176 dt (exp ioJt ) 
dr2 doJ ko 2rr d-  g 

where k0 and k are the initial and final wave vectors, q = k0 - k, hw is the 
energy transferred to the neutron in the scattering process, b~ is the bound 
scattering length of nucleus ~ in molecule i, and Ue(t) is the vector location 
of nucletts/3 in molecule j at time t. 

Summations over i and j are over all molecules in the system, and sum- 
mations over a and/3 are over all the nuclei in a single molecule. Angular 
brackets here indicate both a grand canonical ensemble average, and also 
an averaging over isotopic species and nuclear spin states. Assuming that 
there is no correlation between nuclear spin states and particle positions or 
velocities, or between the nuclear spins themselves, it is possible to perform 
the averaging over nuclear spins and isotopes separately: 

b,~bje = b~bB + [b~r - b~b~] = b~b B + [be ----~ - b f ]  3~B3~ j (31) 
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In (31) bars over b~ and b. 2 indicate averaging over both nuclear spin states 
and isotopic composition; b. is the mean coherent scattering length and 
blno,. = [b~ 2 - ~ 211/2 is the incoherent scattering length, each for nucleus ~. 
From (31) and (30), the cross section may be separated into coherent and 
incoherent contributions 

dO do~ = ~ Nm 5c~ 2S(qo-,) + b~no,,~ S,(qoJ) (32) 

where Arm is the average number of molecules in the system, and S(qoJ) and 
S=(qw) are the coherent and incoherent dynamic structure factors, given by 

S(I . )  = (I/27r)j~'-  dt e-" t / (q t )  (33) 

S=(qoJ) = (I/2rr) ~_+" dt e-'~ (34) 

In (33) and (34) the coherent and incoherent intermediate scattering 
functions/((It) and l,(qt), have been introduced, and are given by 

/(q,) = [ l / N m ( ~ / ~ . ) ' ]  ~ 6 . ,  a ~ j  exp[-iq-r, .(0)] exp[ iq . r j , ( , ) ] )  (35) 

I . ( q t )=( l /N ,=~b~o . . )~b ,o . . (~exp[ - iq . r , . (O) ]exp[ iq . r , . ( t ) ] )  (36) 

It is convenient to separate those structural effects that arise from inter- 
molecular correlations from those arising from intramolecular correlations. 
We therefore write 

r~  = R~ + r~i= (37) 

where R~ is the vector locating the center (arbitrarily defined) of molecule i 
and r**. is the vector from the center of molecule i to t h e ,  nucleus of i. We 
also define F~(qf2i) and F(qf2~) by (Gubbins et al. ~6~) 

F~(qf2,) = exp(iq.rc,~) (38) 

(39) 

F(qf2~) is proportional to the scattering amplitude for molecule i in the 
orientation f2~. Substituting (37) into (35), and separating the i = j and i ~ j 
terms in the ij summation, we obtain, with the use of (38) and (39), 

I(qt) = ~ntra(qt) + ~nter(qt) (40) 
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where 

Ilntra(qt) = ( l / N m ) ( ~  {exp[iq.(R,(t) - l~(O))]}F(qf2~(t))F(qf~,(O))*) (41) 

Ilnter(qt) =(1/Nm)(~ {exp[iq.(R,(t) - I~(O))]}F(qf2~(t))F(qf~,(O))*) (42) 

Here Iintr~(qt) corresponds to the single-molecule part of the coherent 
scattering, and is independent of the choice of molecular center; Ilnter(qt) 
corresponds to the intermolecular part of the coherent scattering. The 
corresponding expression for the incoherent intermediate scattering function 
is obtained from (36)-(38) as 

= b 2 , 

x ( ~  {exp[iq.(R~(t) - ~(O))]}F~(qf~,(t))F~(qa,(O))* ) (43) 

We now specialize to the case in which the molecules may be treated as 
rigid structures, i.e., internal rotation and vibration effects may be ignored. 
Equations (41)-(43) can be expressed in terms of the time-dependent angular 
pair correlation function. Thus (41) is equivalent to 

Ixntra(qt) = (1/Nm) f dR1 dR2 dr21 df~2 (exp[iq.(R2 - R1)]}F(q~l)*F(qf22) 

x ( ~  ~(al - ai(0)) ~(S2 - a~(t)) ~(f~l - ~(0))  

x $(g/a -- ~qi(t)))  

which, together with (5), becomes 

I~t~a(qt) = p f dRy2 [exp(-  iq- R12) ]( Gs(RxR2f21f2~t )F(q~l)* F(qf22) )ala2 (44) 

Here R~2 = R~ - R2 and ('")axnz has the meaning given in (14). In (44) 
the fluid is assumed to be homogeneous, but it is not necessarily isotropic. 
The corresponding expressions for l~te~(qt) and/~(qt) in terms of distribution 
functions are obtained from (42), (43), (5), and (6) as 

p f dR12 [exp(-  iq-R~2)](Ga(RxR2f2~f22t)F(qD~)*F(qf22))a~a~ (45) Iinter(qt) 

x [exp(-  iq. Rx2)](G~(RtR2f2~f~2t)F~(qf2~)*F~(qf22))a~a~ (46) 
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Finally, from (33), (34), (40), and (44)-(46), the coherent and incoherent 
dynamic structure factors are given by 

S(qoO = (O/2,r ) dt [exp(-ioJt)] dRy2 

x [exp(- iq.R~2)l(G(R~R2f2~f22t)F(qf2~)*F(qf22))n~n~ (47) 
+ 0 o  

b 2 S~(qr (p/2~ ~ lno..) ~ b,~o,~ ~_| dt [exp(-hot)] f dRx2 

x [exp(- iq.R~2)](G,(R~R2s (48) 

In contrast to the case of monatomic fluids, it is not possible to invert 
Eq. (47) or Eq. (48) to obtain the time-dependent angular pair correlation 
functions. 

4. L I M I T I N G  CASES 

We now briefly consider various limiting conditions for S(qr For 
monatomic fluids both F~(qO~) and F(qO0 reduce to unity, and (32), (47), 
and (48) become the usual equations, 

d2cr = k Nm{~2S(qco ) + b~oS~(qoJ)} (49) 
dO do ko 

with 

p f+~ S(qoJ) = ~ j_  o~ 

P f+~o &(qo~) = ~ j_  

dt [exp(-kot)] f dRy2 [exp(-iq.R~2)]G(RiR~.t) (50) 

i"  
dt [exp(- i~ot)] JdR~2[exp(-iq.R~2)]G,(R~R2t) (51) 

In these equations G(R~R2t) is the usual Van Hove function, given by (24). 
The static limit is obtained in the usual way, by integrating the differential 

scattering cross section over all values of the energy transfer oJ. Thus, from 
(32), (47), (13), and (14), together with the static approximation (replacement 
of k/ko by unity), 

= Arm b~ [Sl~r~(q) + S~te~(q)] 

(52) 

where 

Slntr~(q) = (IF(q~,)l~)~, (53) 

Slnter(q) = p F dR12 [exp(-iq-Rlz)](g(R1Rzf21f~2)F(qf~)*F(qf~2))nla2 (54) 
d 
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Similarly, the static limit for the incoherent cross section gives 

(d~/df~)~c = Nm ~ b~no,,~ (55) 
a 

from (32), (48), and (13). Equations (52)-(55) have been previously derived 
elsewhere (Gubbins et al. (6~) 

The limit q -+  0 gives F , ( q f ~ ) =  F(qf20 = 1, so that (47) and (48) 
then become 

S(OoJ) = [pkT x + Nm] 3(w) (56) 

s,(oo~) = ~(,o) (57) 

as for monatomic fluids; here X is the isothermal compressibility. In (56) 
the term Nm 8(~o) represents forward scattering, and is omitted by some 
authors. The q ~ ~ limit corresponds to neutrons scattering from individual 
nuclei. Thus I~ter(qt) vanishes for all t in this limit, while the other parts of 
the intermediate scattering function vanish except at t = 0, where they are 
given by 

L(~0)  = 1 (59) 

It is readily verified that these results agree with those already derived for 
q -+ ~ in the static limit (Gubbins et al. C6)); thus 

S(oo) = Imtra(OO0) (60) 

In the free rotation limit the intermediate scattering function factorizes 
into a translational and a rotational part. Thus, from (44)-(46) together with 
(26) and (27) the free rotation expressions are 

_~_ [ t r a n s  t /rot t Is(qt) , ( q ) ,  (q)  (61) 
Itran~r"t wr~ r"t~ (62) 11~tr~(qt) = s ~'l J'intra~'l J 
ltranst.t ~lrot [,~ (63) Ilnter(qt) = ,inter \tll )'inter~.tl/ 

where 

l~ran~(qt) = p f dry2 [exp(-- iq.R~2)]G,(R~R2t) (64) 

I tr~n~r"'~ f dRy2 [exp(-iq-R~2)]Ga(R~R2t) (65) i n t e r  k~l. ~ ) : P 

Is~~ = ( N ~ / ~  bt~o,~) ~ b~no,~(G~(f~)2t)F~(qf~)*F~(q~)2))a~a~ (66) 

F ~ = Nm(G~(f2~f22t)F(qf2~)*F(qf2~))n~n~ (67) 

lrot t.~ (68) ~nt~r~'v = (F(qf2,))~, 
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5. SPECTRAL M O M E N T S  

The lower order spectral moments were worked out for atomic fluids 
by Placzek (lz~ and de Gennes. (2~ Here we give a few simple lower order 
moments for homonuclear diatomic molecules, and comment on possible 
uses of these moments. The moments up to fourth order will be derived for 
general polyatomic molecules elsewhere (Mo et al.(l~ O. 

The nth moment of the coherent spectrum is defined as 

M(n) = doJ S(qco)w" (69) 
c o  

with a similar expression for moments Ms(n) of the incoherent spectrum 
S~(qco). The normalizations of S(q~o) and S~(q~o) are such that M(0) = S(q)  
and M~(0) = 1. For classical systems the odd moments vanish since S(qoJ) 
and S,(qoJ) are even functions of co. 

From (33) and (69) we find that 

n ( n )  = ( -  i)~[~I(qt)/~t~]t =o (70) 

From (70), (35), and (36) we find the following expressions for a homonuclear 
diatomic molecular fluid: 

M(2) = ~(kT/m)q2[5 + jo(ql) - 2j2(ql)] (71) 

Ms(2) = (5/3)(kT/m)q 2 (72) 

M s ( 4 ) = - ~  kT~2 4 q2 { ( F 2 ) + ~ ( T 2 ) + 3 2 ( ~ ) 2 ]  (73) ( ~--J q +~-~-~ 

In these expressions m is the molecular mass, l is the bond length, and jz(x) 
is a spherical Bessel function. (F  2) is the mean squared force on a molecule, 
and (~.2) is the mean squared torque. 

The expressions (71) and (72) have been derived previously by de Gennes .~2~ 
In Fig. 1 we plot the function 

f ( x )  = ~[5 + jo(X) - 2j2(x)] (74) 

where x = ql, and which appears in M(2). It is seen tha t fpasses  through a 
minimum at Xm ~-- (5/4)~r. Hence, from a plot of M(2)/q 2 vs. q, one can obtain 
the bond length in the liquid from the relation qml ~-- (5/4)~'. 

From (73) it is seen that the fourth moment of the incoherent spectrum 
involves the mean squared torque, as well as the mean squared force term 
which occurs for atomic liquids. The k T  terms also differ from the atomic 
fluid case because of the rotational kinetic energy of the molecules. We have 
studied the influence of anisotropic intermolecular potentials on M~(4) using 
a pair potential of the form 

u ( R 1 2 f ~ )  = Uo(R~) + uo(R~2~f~) (75) 
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Fig. 1. The function f(x), defined by Eq. (74), which appears in the equation for M(2) 
for homonuclear diatomics. 

where uo(R12) is the Lennard-Jones (12, 6) model, and ua(R12~1~22) is either 
a dipole-dipole or a quadrupole-quadrupole interaction. Monte Carlo 
calculations using this potential model are available for both the mean squared 
force (Gray et al. ~ )  and the mean squared torque (Twu et al.(~l)). Figure 2 
shows a sample calculation of the reduced fourth moment, given by 

M8(4) 43 T,Zq,~ q,2 [ ( F  2) 4 ( r  2) 32T .2] 
(~/mo2)2 = -~ + -y- [ ( ~  + l,--- ~ ----~ + ~ j  (76) 

at q* = 5 for two values of the reduced bond length. Here E and cr are the 
Lennard-Jones parameters, T* = kT/~, q* = q,7, and l* = l/,~. The effect of 
the anisotropic forces is less at larger q* or T* values. In principle the fourth 
incoherent moment provides an experimental method for estimating the 
mean squared torque, if the mean squared force is known, and vice versa. 
Other experiments depending on the mean squared torque and the mean 
squared force are reviewed by Twu et al. ~21) and Gray et al. ~4~, respectively. 

It is difficult to compare the theoretical moments (71)-(73) with moments 
derived from neutron data, because of the accuracy needed in the wings of 
the spectrum. One potential use of these moments is in conjunction with 
molecular dynamics data for S(qoJ) and Ss(qco) for molecular liquids, as has 
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Fig. 2. Fourth moment of the incoherent spectrum for homonuclear diatomic molecules 
having the intermolecular potential given by Eq. (75), based on Monte Carlo data. 
Results are for dipolar (curves labeled 0~) and quadrupolar (QQ curves) potentials at 
reduced bond lengths l* = 0.3 (solid lines) and l* = 0.6 (dashed lines). The state con- 
dition is P* = 0.800, T* = 0.719, and all curves are for q* = 5. 

been done for atomic liquids (Nijboer and Rahman~lX~). The moments also 
provide a check for theoretical models of S(q~) and Ss(qoJ). 

6. S U M M A R Y  

The time-dependent angular pair correlation functions G(R1R2f21f22t) 
and Gs(R~R2f~lf~2t) have been introduced and their properties discussed. 
These functions provide the most natural theoretical framework for the 
interpretation of the inelastic neutron scattering functions S(qoJ) and Ss(qo~) 
for molecular liquids. Most models to date for the time-dependent angular 
correlation functions have assumed uncorrelated translational and rotational 
motions. This approximation should be tested more extensively. The lower 
order frequency moments of S(qo.,) and S~(qoJ) have been evaluated exactly 
for diatomic molecules. The fourth moment of S~(qoJ) depends on the mean 
squared torque acting on a molecule, as well as on the mean squared force, 
and in principle provides a means of obtaining information about the nature 
and strength of the forces in the fluid. Alternatively, these moment results 
can be used as sum rules to check molecular dynamics results or theoretical 
models for S(qo~) and S~(qoJ). 
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APPENDIX.  PERTURBATION T H E O R Y  FOR THE A N G U L A R  
V A N  HOVE FUNCTION 

We consider " rea l"  and "reference" systems with potentials ~'(RN~ n) 
and q/o(Rn), respectively, where 

~o(R n) = (~//(Rnnn))aN = (1/CZ n) f d~  n ~(RUQ n) (n.1) 

The perturbing potential is ~ ( R n ~  n) = ~ - q/o. The Liouville operator 
(5) splits into 

i o  = .Lp ~ + ~qo (A.2)  

where 

- i  ~" [~HN a 0~o 0 0HN 0-] -% 
J~"= z [" ~ 0Rj ~R~ ~pj + 0pn j -  ~ y  

(A.3) J 

[0m o - - ' u  
~= = i [ ~ j  + ( n . 4 )  

j = 1 OPn~ ~Rj 

The perturbation theory for general time correlation functions (A(O)B(t)) 
in the canonical ensemble has been derived by Harris (7~ (cf. Gubbins (5) for a 
review). Applying the general result to (8), we get to first order 

(p(Rl ~)lO)p(R2~2t ) ) = (po(Rl ~zO)po(R2~)2t ) )o 

- flK~'~po(R1 ~0)po(R2~2t))o 

f2 + i d~" (po(R~O)S,~ - -))0 (A.5) 

where p0(RE~t) = S~~ is the time-dependent density in the reference 
system, and ( '")o indicates a reference system ensemble averaging. 

In principle (A.5) allows one to calculate the angular Van Hove function 
from spherical reference system time correlation functions. 

To calculate the correlation function of the centers G(R~R2t) from (A.5) 
we use (20) to get 

G(R~R2t) = Go(R~R2t) - (b2/p2)fl(~po(R~O)po(Rg, t))o 
t 

+ (i02/P2) Jo de (po(RzO)S,~ - -  "r)) o 

The reference averaging ( '")o contains the unweighted angular average 
(.-.)a~, which annuls the ~q term by virtue of (o#~)an = 0. The time integral 
term vanishes as ~q~,po(R~t - ~) = 0; this follows because po is independent 
of the pg's and (q/ , )  n = 0. Thus to first order 

G(R~R~t) = Go(R1R~.t) (A.6) 

as stated in (29). 
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